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ABSTRACT

In this paper, we have investigated the dynamical behavior of an SIR epidemic model represented by chicken
pox disease that speared within a stage structure population in the absence of vaccine. Two types of transmitted
modes are considered. The existence, uniqueness and boundedness of the solution of the model are discussed. The
basic reproduction number , which represents an expected number of secondary cases produced, is computed. The
local as well as global stability of the system in terms of basic reproduction number is investigated. The local
bifurcation of the system is studied. The possibility of occurrence of Hobf bifurcation near the endemic equilibrium
point is discussed. Numerical simulation is used to complete the analysis of the system.
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I. INTRODUCTION
Chicken pox, is a highly contagious disease caused by the initial infection with varicella zoster virus (VZV). The
disease results in a characteristic skin rash that forms small, itchy blisters, which eventually scab. It usually starts on
the chest, back, and face, then spreads to the rest of the body. Other symptoms may include fever, feeling tired, and
headaches, symptoms usually appear last five to ten days. Complications may occasionally include pneumonia,
inflammation of the brain, or bacterial infections of the skin among others. The disease is more often, more severe in
adults than children. Symptoms begin ten to twenty one days after exposure to the virus [1].

In the era of the absence vaccine, approximately 11,000 persons with varicella required hospitalization each
year. Hospitalization rates were approximately 2 to 3 per 1,000 cases among healthy children and 8 per 1,000 cases
among adults. Death occurred in approximately 1 in 60,000 cases. From 1990 to 1996, averages of 103 deaths from
varicella disease were reported each year. Most deaths occur in immunocompetent children and adults. Since 1996,
hospitalizations and deaths from varicella have declined more than 70% and 88% respectively [2]. The varicella
vaccine has resulted in a decrease in the number of cases and complications from the disease. It protects about 70%
to 90% of people from disease [3-6]. For this reason, epidemiological models have become important tools in
analyzing the spread and control of infectious diseases after the simple model of Kermac–Mckendric on SIR system,
in which the evolution of a disease which gets transmitted upon contact is described [7]. Afterward, several
researchers work on the development of this model, where they studied the effect of vaccines, stage structure and
treatments, for example, Kribs-Zaleta and Velasco-Hernandez in 2000 [8] have been proposed and studied the SIS
epidemic model with vaccine for the diseases such as pertussis and tuberculosis Later on Arino et al. [9], generalized
this model by allowing individuals recovering from the diseases to go into a temporarily immune class rather than
directly back in to the susceptible class. Kribs-Zaleta and Martcheva [10] investigated the effects of a vaccination
campaign upon the spread of non-fatal diseases such as Hepatitis A, B. Alexander et al. [11] and Shim [12] are
discussing the transmission dynamics of influenza with vaccination through using SVIR models. ,d Onofrio et al.
[13] gave a family of models for information related vaccinating behavior. Aiello and Freedman [14] studied a
stage-structured model of one species growth consisting of immature and mature members. Cui et al. [15] analyzed
the effect of dispersal on the permanence of a stage-structured single-species population model without time delay.
Cui and Song [16] proposed and analyzed a prey-predator model with stage structure for prey. Chen [17] studied the
permanence of periodic predator–prey system with stage structure for prey. In this paper we proposed and studied a
mathematical model for the dynamics of SIR epidemic, which represented by chicken pox disease, model within a
stage structure population in case of absence of vaccine.

II. MATHEMATICAL FORMULA
In this section, an epidemiological model that describes the dynamics of SIR epidemic real world system represented
by chicken pox disease, which speared within a stage structure population, is proposed to study. In order to
formulate the dynamic equations for such a model the following assumptions are made.
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i. The population is divided into three compartments, namely susceptible, infected and removal due to
the existence of SIR- type of disease.

ii. It is assumed that the susceptible population is a stage structure population and hence it divided into
two classes, namely immature susceptible and mature susceptible.

iii. There is a constant number of the susceptible individuals entering to the system, which are
representing the new born individuals, with recruitment rate 0 .

iv. The disease can be transferred from the infected individual to the susceptible individual in both the
susceptible classes, immature as well as mature, due to contact between the individuals in the infected
compartment and those in the susceptible compartment with contact rates 01  and 02  for
the immature susceptible and mature susceptible respectively. The disease can be transferred to the
individuals in the susceptible classes through other external factors (such as insects, air, etc) with
external incidence rates 01  and 02  for the immature susceptible and mature susceptible
respectively.

v. The immature individuals in the susceptible compartment become mature with grown up rate 0 .
However the individuals in all the compartments face natural death with mortality rate 0d .

vi. Finally it is assumed that the individuals in the infected compartment may be recovered and gain
permanent immunity with recover rate 0 .

Let the densities at time t of immature susceptible, mature susceptible, infected and removal populations are
represented by )(),(),( 21 tItStS and )(tR respectively. Therefore the dynamics of the above described
system can be represented mathematically with the following set of differential equations.
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with 0)0(,0)0(,0)0( 21  ISS and 0)0( R .

Clearly the interaction functions in the right hand side of system (1) are continuous and have continuous partial

derivatives on  0,0,0,0:),,,( 21
4

21
4  RISSRRISSR and hence they are Lipschtizaine. In

addition all solutions of this model are uniformly bounded as shown in the following theorem. Therefore system (1)
has a unique solution.

Theorem (1): All solutions of system (1) which initiate in 4
R are uniformly bounded.

Proof: Let         tRtItStS ,,, 21 be any solution of the system (1) with non-negative initial condition

        0,0,0,0 21 RISS , and let          tRtItStStN  21 , then:
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dt
dR

dt
dI

dt
dS

dt
dS

dt
dN

 21

which gives

dN
dt
dN



Now, by using Gronweall Lemma, it obtain that

  dte
d

NtN 





 

 0

Therefore,   ,
d

tN 
 as t , that is independent of the initial conditions and hence the proof is complete.

III. THE EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER
It is easy to verify that the recovered population R is related with infected population only. Hence for fixed

value of I , the value of R can be determined directly by solving the fourth equation in system (1). In fact, for

0I , then R approaches to zero asymptotically. However, for *II  , where 0* I , then R approaches
asymptotically to

** I
d

R 
 (2)

Consequently, for simplifying, system (1) can be reduced to the following system, in which we can determine the
value of I , by solving it, and then using Eq. (2).

IdIISSISS
dt
dI
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(3)

Now, straightforward computation shows that system (3) has at most two biologically feasible equilibrium points.
These two points can be described as follows

In case of absence of disease ( 0I ), there is an equilibrium point represented by  0,, 21
ooo SSE  and it’s

called the disease free equilibrium point, where

d
So





1 and  dd

S o







2 (4a)

Clearly, the disease free equilibrium point exists uniquely in the interior of positive quadrant of 21SS plane
provided that the following condition holds
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021   (4b)

In case of existence of disease ( 0I ), system (3) has an equilibrium point represented by   ISSE ,, 21
* and

it’s called endemic equilibrium point, where

  dIdI
S

dI
S






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 
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*
1 ,





(5a)

while I represents a positive root for the following equation

043
2

2
3

1  BIBIBIB (5b)

here   0211  dB

  dddB 1221212212  

    2
122122112213 ddddddB  

021214   dB

Obviously, the endemic equilibrium point exists unique in the interior of positive octant of ISS 21 space if and
only if the following condition holds

02 B or 03 B (5c)

It is well known that the basic reproduction number, which is denoted by 0R , is an expected number of
secondary cases produced, in a completely susceptible population, by a typical infective individual' [18]. Indeed, if

10 R , then on average an infected individual produces less than one new infected individual over the course of

its infectious period, and the infection cannot grow. Conversely, if 10 R , then each infected individual produces,
on average, more than one new infection, and the disease can invade the population.

It is clear that, in case of absence of disease, system (1) has a disease free equilibrium point  0,, 21
ooo SSE 

under the condition (4b). Therefore in order to compute 0R , we first rearrange system (3) so that it becomes

222221
2

111111
1

22221111
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dt
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dt

dS

IdIISSISS
dt
dI













(6)

Let  TSSIX 21,, , then system (6) can be written as
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)()( XvXf
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Now straightforward computation shows that   oEX
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where   112211  oo SSF  and   11 dV  , therefore the basic reproduction number represent is the

spectral radius of the next generation matrix 1FV [18], that means  1FV . Consequently, the basic
reproduction number of system (3) can be written as

 
  ddd

d
d

SSR
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







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
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0 (7)

IV. LOCAL STABILITY ANALYSIS
In this section, the local stability analysis of each equilibrium points is studied in terms of basic reproduction
number as shown in the following theorems. First the Jacobian matrix of system (3) at the point ),,( 21 ISSE  ,
can be written as


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Theorem (2): Assume that the disease free equilibrium point oE exists, then it is locally asymptotically stable

when 10 R , while oE unstable if 10 R

Proof: Clearly the Jacobian matrix of system (3) at oE which is denoted by  oEJ can be written
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Accordingly, the eigenvalues of )( oEJ are given by

)(,0,0)( 221121
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I
o
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Therefore, all the eigenvalues will be negative and hence the disease free equilibrium point is locally asymptotically

stable if and only if 12211
0 





d

SSR
oo




or equivalently 0o
I . However it is unstable saddle point if and

only if 12211
0 





d

SSR
oo




or equivalently 0o
I . Hence the proof is complete.

Theorem (3): The endemic equilibrium point E of system (3) is locally asymptotically stable if the following
sufficient conditions hold

   dSS 2211 (10a)

    233221221113
*
11 RaaRaaARS  (10b)

where 3,2,1; iRi are given in the proof.

Proof: The Jacobian matrix of system (3) at E , say  EJ , can be written
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Hence, the characteristics equation of  EJ is given by

032
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1
3  AAA  (11b)

where  3322111 aaaA  , 2122112 RRaaA  and  3132113 RaRaA  ; while

311333111 aaaaR  , 322333222 aaaaR  and 0312232213  aaaaR . Furthermore we have that:

    3
*
1123322122111321 RSRaaRaaAAAA 
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Now, according to Routh-Hurwitz criterion E will be locally asymptotically stable provided that
0,0 31  AA and 0 . It is clear that, condition (10a) guarantees that 01 R and 02 R . Hence we

obtain that 01 A and 03 A . However, 0 if and only if conditions (10a)-(10b) are satisfied. Hence the
proof is complete.

Recall that, since oSS 1
*
1  and oSS 2

*
2  then satisfying condition (10a) don’t necessary leads to

12211
0 





d

SSR
oo




.

V. GLOBAL STABILITY ANALYSIS
In this section, the region of global stability (basin of attraction) of each equilibrium point of system (3) is presented
as shown in the following theorems.

Theorem (4): Assume that, the disease free equilibrium point oE is locally asymptotically stable. Then it is a

globally asymptotically stable in the sub region of 3
R that satisfies the following sufficient conditions:

    IdSSISSI oo )(1)(1)( 22221111   (12a)
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Now, by doing some algebraic manipulation and using the condition (12a), we get
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Consequently, due to condition (12b), 01 
dt

dw
is negative definite and hence 1w is a Lyapunov function with

respect to oE in the region that satisfies the given condition. Thus oE is a globally asymptotically stable and the
proof is complete. ■

Theorem (5): Assume that the equilibrium point E is locally asymptotically stable. Then it is a globally

asymptotically stable in the sub region of 3
R provided that

  dSS 2211 (13a)

2211
2 qq (13b)

3311
2
13 qqq  (13c)
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2
23 qqq  (13d)
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1111 Idq   , *

111113 ISq   , *
2222 Idq   ,

*
222223 ISq   , and 221133 SSdq   .

Proof: Consider the following positive definite function
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
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It is easy to verify that    RRCISSw ,,, 31
212  , in addition,   0,, 212  ISSw while   0,, 212 ISSw

  3
21 ,,  RISS and     ISSISS ,,,, 2121 . Further by determine the derivative of 2w with respect to t

and simplifying the resulting terms, we get
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

Clearly 33q is positive under condition (13a), while conditions (13b)-(13d) give us that
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       

   
2

33
22

22

2
33

11
11

2

22
22

11
112

22

2222












































II
d

SSd

II
d

SSdSSdSSd
dt

dw

Obviously,
dt

dw2 is negative definite and hence 2w is Layapunov function with respect to E . So E is globally

asymptotically stable in the sub region that satisfies the given conditions.

VI. LOCAL BIFURCATION ANALYSIS
In this section, the occurrence of local bifurcation (such as transcritical, pitchfork and saddle-node) around

equilibrium points is studied. Consider system (3), which can be rewritten as )(YHdt
dY  , where

TISSY ),,( 21 and ThhhYH ),,()( 321 . Recall that, the general Jacobian matrix of system (3), say

),,( 21 ISSJDH Y
H  

 , is given by Eq. (8). Then straightforward computation shows that for any non-zero

vector  TvvvV 321 ,, we get

 






















322311

322

311
2

22
2
2

,
vvvv

vv
vv

VVHD





(14)

However 0),,(3 VVVHD , therefore pitchfork bifurcation can’t be occur for system (3).

Theorem (6): The system (3) undergoes a transcritical bifurcation but not saddle node bifurcation at disease free

equilibrium point oE if and only if 10 R .

Proof: Since the Jacobian matrix of system (3) at oE , that given by Eq.(9), has zero eigenvalue (say 0I )

provided that 1)(0
2211  





d
SS oo

R or equivalently at  ~
2211  dSS oo . So the Jacobian matrix

 ~,oEJ becomes:-

 




















000

0)(
~,~

22

11
o

o

o Sd
Sd

EJJ 




Now, let  TkkkK 321 ,, be the eigenvector corresponding to the eigenvalue 0I . Thus 0KJ~ , which
gives:
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Toooo
kk

dd
SdSSk

d
SK 

















 33
222211

3
11 ,

)(
)(

,






; 3k any nonzero real number

Let  T321 ,,  be the eigenvector associated with the eigenvalue 0I of the matrix TJ~ . Then from

0J~ we obtain

 T3,0,0  ; with 3 any nonzero real number.

Now, consider

   T
T

I
hhhYHH




















 ,0,0,,, 321




 

So,    ToEH 0,0,0~,  and then   0~,  
oT EH

Thus, according to Sotomayor's theorem [19] the saddle-node bifurcation cannot occur. While the first condition of
transcritical bifurcation is satisfied. Now, since

 



















100
000
000

, YDH

Hence we obtain that

   0~, 33   kKEDH oT

Moreover, according to Eq. (14) and the eigenvector K above we have

  

 
 

  






















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








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








2
3222211

21
2
1

2
3222211

2

2
32222112

1
2
1

2

)(
)(

2
)(

2

)(
)(

2

)(
)(

2

,~,

kSdSS
ddd

S

kSdSS
dd

kSdSS
dd

S

KKEHD

ooo
o

ooo

ooo
o

o


















Hence, it is obtain

      0)(
)(

2
)(

2
,~, 3

2
3222211

21
2

12 

















 







 kSdSS
ddd

SKKEHD ooo
o

oT
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Thus, according to Sotomayor's theorem system (3) has transcritical bifurcation at oE provided that 10 R or

 ~ , which complete the proof.

Theorem (7): Assume that

   dSS 2211 (15a)

Then system (3) near the endemic equilibrium point *E undergoes a saddle node bifurcation but not transcritical
bifurcation, as the parameter  passes the following specific value

  dSS *
22

*
11

* (15b)

here 0
)(

2211

3122322113322311 



aa

aaaaaaaa


Proof: According to the Eq. (15b), it is easy to verify that the value of the determinant of )( *EJ , that given by

3A in the characteristic equation Eq. (11b), will be vanish, that means 03 A . Therefore, )( *EJ has zero

eigenvalue, say 0*  , which makes *E non hyperbolic point.

Consequently, the Jacobian matrix of system (3) at E with the parameter  becomes

   ijaEJJ  ** , ; where ija , 3,2,1, ji are given in Eq. (11a) with   )( *
33

*
33 aa .

Let  TpppP 321 ,, be the eigenvector corresponding to the eigenvalue 0*  . Thus 0PJ * , which gives:

),,( 33231 pppP  ; 3p be any nonzero real number.

here, 0,0
2211

23112113
2

11

13
1 




aa
aaaa

a
a



Let  TwwwW 321 ,, be the eigenvector associated with the eigenvalue 0*  of the matrix
T

J  . Then we

have 0WJ
T* ,which gives

),,( 33231 wwwW  ; 3w be any nonzero real number.

here 0;0
22

32
2

2211

31223221
1 




a
a

aa
aaaa

 .

Now, consider

   T
T

I
hhhYHH




















 ,0,0,,, 321




 
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So,    TIEH   ,0,0, , and hence   0, 3   wIEHW T 

Therefore, the transcritical bifurcation can’t occur. While the first condition of the saddle-node bifurcation is
satisfied.

Moreover, according to Eq. (14) and the eigenvector P above we have

  






















2
322

2
311

2
322

2
3211

**2

22
2

2
,,

pp
p
p

PPEHD







Hence, it is obtain

         3
2
32221211

2 1212,, wpPPEHDW T  

Now it is easy to verify that     0,,2  PPEHDW T  . Hence, the system (3) has a saddle-node bifurcation

at E with parameter  .

In the following theorem, the possibility of occurrence of Hopf bifurcation near the endemic equilibrium point is
investigated. Although, any parameter in system (3) can be a bifurcation parameter, the recover rate parameter ( )
is choosing as a candidate bifurcation parameter which makes the endemic equilibrium point non hyperbolic point
due to having two pure imaginary eigenvalues as this parameter passing through a specific value given in the
following theorem.

Theorem (8): Assume that condition (10a) is satisfied and the recover rate parameter  passing through the
following specific value

  dNNN
NN

NSS 







 

31
2
2

11

2
2211 4

2
1

2
ˆ  (16)

where 3,2,1; iN i are given in the proof. Then system (3) has two pure imaginary eigenvalues with the third real

and negative. Further it still does not possess a Hopf bifurcation around the equilibrium point E .

Proof: According to the characteristic equation of the system (3) at E that is given by Eq.(11b). It is easy to
verify that

0321  AAA  03332
2
331  NaNaN (17a)

where   022111  aaN ,

 22211322331132 aaaaaaN 

    02211221132232232213111133  aaaaaaaaaaaaN
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while 3,2,1,; jiaij are given in (11a). Consequently, the roots of Eq. (17a) are given by:

31
2
2

11

2
33 4

2
1

2
NNN

NN
Na 


 

Since,   0221133    dSSa by condition (10a), then we get

  31
2
2

11

2
2211 4

2
1

2
NNN

NN
NdSS 


  

Clearly as the parameter  passing through the value of ̂ that given in Eq. (16), then Eq. (17a) is satisfied and

hence we obtain 321 AAA  in the characteristic equation given by Eq. (11b). Therefore the characteristic
equation can be rewritten as:-

   0)( 2
2

13  AAP  (17b)

which gives the following roots 011  A under the sufficient condition (10a) and

iAi )ˆ(223,2    . Hence the first part of the theorem is proved.

Recall that the necessary and sufficient conditions for having Hopf bifurcation in system (3), near the endemic
equilibrium point and  ˆ , are the existence of two complex conjugate eigenvalues say

    213,2 i with the third eigenvalue is real and negative, so that 0)ˆ(1  . This is satisfied from

the first part. The second condition of having Hopf bifurcation is that 0)ˆ(1ˆ
1  




d
d .

Now in order to check the occurrence of Hopf bifurcation in system (3) the second condition should be satisfied
otherwise there is no such bifurcation.

From Eq. (17b), it’s clear that there is a range around ̂ for which, the complex eigenvalues of system (3) are

written in general as     213,2 i . Then by substituting     212 i into the equation

(17b), and calculating the derivative with respect to the bifurcation parameter  , that is   03  P and then
comparing the two sides of this equation with equating their real and imaginary parts, we get

         
         


HEF
GFE




21

21 (17c)

here              22211
2

1 323   AAE

          2121 26 AF 

                 2213121
2

1   AAAAG

            221212  AAH
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Solving the resulting linear system (17c) for the unknown  1 and  2 , it is observe that:-

   
221

FE
FHEG




  (17d)

Hence the second condition of Hopf bifurcation will be reduced to verifying that

        0ˆˆˆˆ   HFGE (17e)

Straightforward computation shows as:-

11 A ,  22112 aaA  ,     222111213 AaaAAAA 

Thus for  ˆ we have

22AE  , 212 AAF  ,  22111 aaAG  ,   22211 AaaH 

Therefore, substituting in equation (17e), we get

0 FHEG

Hence, the Hopf bifurcation can not occur around the equilibrium point *E . Thus the proof is complete.

VII. NUMERICAL SIMULATIONS
In this section, the global dynamics of system (1) is investigated numerically for different sets of initial values and
different sets of parameters values. The objectives of such investigation are determine the effect of varying the
parameters values and confirm our obtained results. It is observed that, for the following biologically feasible set of
hypothetical parameters values:

5.0,4.0,03.0,01.0,01.0,001.0,6.0,100 2121   d (18)

The solution of system (1) approaches asymptotically to the endemic equilibrium point

)86.101,49.81,57.11,06.55(* E as shown in Fig. (1), started from different sets of initial points.
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Fig. 1: Globally asymptotically stable positive equilibrium point of system (1) for the parameters set (18), started
from different sets of initial point. (a) Trajectory of immature susceptible population. (b) Trajectory of mature

susceptible population. (c) Trajectory of infected population. (d) Trajectory of removal population.

Clearly Fig. (1) confirms our obtained analytical results regarding to existence of a globally asymptotically stable
positive equilibrium point when the parameters values are satisfying 1oR .

On the other hand, system (1) for the following set of hypothetical data approaches asymptotically to the DFE as
shown in Figure 2:

5.0,4.0,003.0,001.0,0,6.0,100 2121   d (19)
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Fig. 2: Globally asymptotically stable DFE of system (1) for the parameters set (19), started from different sets of
initial point. (a) Trajectory of immature susceptible population. (b) Trajectory of mature susceptible population.

(c) Trajectory of infected population. (d) Trajectory of removal population.

It is easy to verify that for the data (19), we have 166.0 oR , and the solution approaches to

)0,0,150,100(oE .

Now in order to investigate the effect of varying one parameter value at a time on the dynamical behavior of system
(1), the following results are observed.

Varying of the parameters values ),,,,,( 2121 d don’t have qualitative effects on the dynamics of system

(1) rather than that they have quantitative effects on the value of positive equilibrium point.

For the parameters values given in Eq.(18) with varying  in the range 16 and 021   , the solution of

the system (1) approaches asymptotically to disease free equilibrium point )0,0,15,10(oE as shown in the
typical figure given by Fig. 3 below.
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Fig. 3: Time series of the solution of system (1) for the data (18) with different values of  . (a) Globally
asymptotically stable endemic equilibrium point for 100 (b) Globally asymptotically stable disease free

equilibrium point oE for 10 .
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According to the Fig. (3), it’s clear that the solution of system (1) approaches asymptotically to the disease free
equilibrium point. Moreover, for the parameters values given in Eq.(18) with 021   and 1.5 the

solution of system (1) approaches asymptotically to )0,0,150,100(oE as shown in the typical figure that
given by Fig. (4).
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Fig. 4: Time series of the solution of system (1) for the data (18) with different values of  . (a) Globally
asymptotically stable endemic equilibrium point for 5.0 (b) Globally asymptotically stable disease free

equilibrium point oE for 5.5 .

According to the Fig. (4), it is clear that as the  increase the solution of system (1) approaches asymptotically to

the )0,0,150,100(oE equilibrium point.

VIII. CONCLUSIONS AND DISCUSSION
In this paper the effects of Chicken pox disease are formulated mathematically and studied analytically as well as
numerically. The objective of this study is to understand the effects of all factors, which helping the spread of
this type of disease and hence get the capability of control the disease.

The boundedness of the system has been discussed. The existence conditions of all possible equilibrium
points of the system are established. All possible equilibrium points with their local and global stability are
investigated. The qualitative dynamical behavior as a function of varying the parameters values is studied
analytically as well as numerically. Finally, for the biologically feasible set of hypothetical data as given in Eq. (18),
the system (1) is solved numerically and the obtained results are explained in some typical figures and we will
summarize as follows.

1- System (1) does not have periodic dynamics; instead of that it approaches either to the disease free
equilibrium point or else to endemic equilibrium point depending on the value of reproduction number.

2- For the set of hypothetical parameters values given by Eq.(18), the system (1) approached

asymptotically to the global stable endemic equilibrium point *E

3- Decreasing the natural birth rate of the susceptible  below the specific value causes destabilizing to
the endemic equilibrium point and the trajectories of system (1) approached asymptotically to the
disease free equilibrium point, which indicate to occurrence of bifurcation. Otherwise the system still
has a globally asymptotically stable endemic equilibrium point.
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4- Increasing the recovery rate  above a specific value causes bifurcation in the system and the
trajectory transferred from the endemic equilibrium point to the disease free equilibrium point
asymptotically. Otherwise the system still approaches to the endemic point.

5- Finally all the other parameters have quantitative change but note qualitative change on the stability of
the positive equilibrium point.
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