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ABSTRACT

In this paper, we have investigated the dynamical behavior of an SIR epidemic model represented by chicken
pox disease that speared within a stage structure population in the absence of vaccine. Two types of transmitted
modes are considered. The existence, uniqueness and boundedness of the solution of the model are discussed. The
basic reproduction number , which represents an expected number of secondary cases produced, is computed. The
local as well as global stability of the system in terms of basic reproduction number is investigated. The local
bifurcation of the system is studied. The possibility of occurrence of Hobf bifurcation near the endemic equilibrium
point is discussed. Numerical simulation is used to complete the analysis of the system.
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I. INTRODUCTION

Chicken pox, is a highly contagious disease caused by the initial infection with varicella zoster virus (VZV). The
disease results in a characteristic skin rash that forms small, itchy blisters, which eventually scab. It usually starts on
the chest, back, and face, then spreads to the rest of the body. Other symptoms may include fever, feeling tired, and
headaches, symptoms usually appear last five to ten days. Complications may occasionally include pneumonia,
inflammation of the brain, or bacterial infections of the skin among others. The disease is more often, more severe in
adults than children. Symptoms begin ten to twenty one days after exposure to the virus [1].

In the era of the absence vaccine, approximately 11,000 persons with varicella required hospitalization each
year. Hospitalization rates were approximately 2 to 3 per 1,000 cases among healthy children and 8 per 1,000 cases
among adults. Death occurred in approximately 1 in 60,000 cases. From 1990 to 1996, averages of 103 deaths from
varicella disease were reported each year. Most deaths occur in immunocompetent children and adults. Since 1996,
hospitalizations and deaths from varicella have declined more than 70% and 88% respectively [2]. The varicella
vaccine has resulted in a decrease in the number of cases and complications from the disease. It protects about 70%
to 90% of people from disease [3-6]. For this reason, epidemiological models have become important tools in
analyzing the spread and control of infectious diseases after the simple model of Kermac—Mckendric on SIR system,
in which the evolution of a disease which gets transmitted upon contact is described [7]. Afterward, several
researchers work on the development of this model, where they studied the effect of vaccines, stage structure and
treatments, for example, Kribs-Zaleta and Velasco-Hernandez in 2000 [8] have been proposed and studied the SIS
epidemic model with vaccine for the diseases such as pertussis and tuberculosis Later on Arino et al. [9], generalized
this model by allowing individuals recovering from the diseases to go into a temporarily immune class rather than
directly back in to the susceptible class. Kribs-Zaleta and Martcheva [10] investigated the effects of a vaccination
campaign upon the spread of non-fatal diseases such as Hepatitis A, B. Alexander et al. [11] and Shim [12] are

discussing the transmission dynamics of influenza with vaccination through using SVIR models. d’ Onoftrio et al.
[13] gave a family of models for information related vaccinating behavior. Aiello and Freedman [14] studied a
stage-structured model of one species growth consisting of immature and mature members. Cui et al. [15] analyzed
the effect of dispersal on the permanence of a stage-structured single-species population model without time delay.
Cui and Song [16] proposed and analyzed a prey-predator model with stage structure for prey. Chen [17] studied the
permanence of periodic predator—prey system with stage structure for prey. In this paper we proposed and studied a
mathematical model for the dynamics of SIR epidemic, which represented by chicken pox disease, model within a
stage structure population in case of absence of vaccine.

II. MATHEMATICAL FORMULA

In this section, an epidemiological model that describes the dynamics of SIR epidemic real world system represented
by chicken pox disease, which speared within a stage structure population, is proposed to study. In order to
formulate the dynamic equations for such a model the following assumptions are made.
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The population is divided into three compartments, namely susceptible, infected and removal due to
the existence of SIR- type of disease.

It is assumed that the susceptible population is a stage structure population and hence it divided into
two classes, namely immature susceptible and mature susceptible.

There is a constant number of the susceptible individuals entering to the system, which are
representing the new born individuals, with recruitment rate A > 0.

The disease can be transferred from the infected individual to the susceptible individual in both the
susceptible classes, immature as well as mature, due to contact between the individuals in the infected

compartment and those in the susceptible compartment with contact rates ,31 >0 and ,6’2 >0 for

the immature susceptible and mature susceptible respectively. The disease can be transferred to the
individuals in the susceptible classes through other external factors (such as insects, air, etc) with

external incidence rates y; =0 and y, 20 for the immature susceptible and mature susceptible

respectively.

The immature individuals in the susceptible compartment become mature with grown up rate a > 0.
However the individuals in all the compartments face natural death with mortality rate d > 0 .

Finally it is assumed that the individuals in the infected compartment may be recovered and gain
permanent immunity with recover rate i > 0.

Let the densities at time ? of immature susceptible, mature susceptible, infected and removal populations are
represented by S(?), S,(¢), 1(¢) and R(¢) respectively. Therefore the dynamics of the above described

system can be represented mathematically with the following set of differential equations.

% =A-aS; -8, — A5 —dS,
das
72 =aS| — 7,8, — B S,1 —dS,
t
dl (1)
E =S+ LS +y28, + oS, I —dl —yl
dR
Xyl —dR
a7

with §,(0) > 0,5,(0) > 0,7(0) = 0 and R(0)>0.

Clearly the interaction functions in the right hand side of system (1) are continuous and have continuous partial

derivatives on Rﬁ = {(Sl ,95,1,R) e R*: $120,5, 20,/ >0,R 20 and hence they are Lipschtizaine. In

addition all solutions of this model are uniformly bounded as shown in the following theorem. Therefore system (1)
has a unique solution.

Theorem (1): All solutions of system (1) which initiate in R_f are uniformly bounded.

Proof:

Let (Sl (l‘), S5 (t),] (t),R(t)) be any solution of the system (1) with non-negative initial condition

(51(0),5,(0).7(0). R(0)) and tet N(r) = S;(¢)+ S, (e)+ 1(e)+ R(r), then:
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AN _ds, dS, dI _dR
d A a aar

which gives

N _A_an
d

Now, by using Gronweall Lemma, it obtain that

NU)SA+(NO—§JJW

Therefore, N (l‘ ) < g , a8 [ —> 00 that is independent of the initial conditions and hence the proof is complete.

II. THE EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER
It is easy to verify that the recovered population R is related with infected population only. Hence for fixed
value of I , the value of R can be determined directly by solving the fourth equation in system (1). In fact, for

I =0, then R approaches to zero asymptotically. However, for I =/ * , where [ "0 , then R approaches
asymptotically to

* Y ox
R =11 2
p ()

Consequently, for simplifying, system (1) can be reduced to the following system, in which we can determine the
value of I , by solving it, and then using Eq. (2).

d

% =A-aS, - 1S - S -dS,

ds

7;: aSl 2S2 ﬂzSz.[ dS2 (3)
dl

I =S|+ LS+ 28, + oSy —dl —yl

Now, straightforward computation shows that system (3) has at most two biologically feasible equilibrium points.
These two points can be described as follows

In case of absence of disease ( / = 0 ), there is an equilibrium point represented by E° = (S{) , S5 ,0) and it’s
called the disease free equilibrium point, where

Sy = A and S5 = o

a+d d(a+d) )

Clearly, the disease free equilibrium point exists uniquely in the interior of positive quadrant of S}, — plane
provided that the following condition holds
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1n=r2=0 (4b)

In case of existence of disease (I > (), system (3) has an equilibrium point represented by £ "= (Sl* Y ; i *) and

it’s called endemic equilibrium point, where

Sl = 5 S2 = (5a)
a+y +pl+d (yy + Sol +d)a+y, + BI+d)
while 1" represents a positive root for the following equation
B +ByI? + By + B, =0 (5b)

here B = —(d + l//)ﬂlﬁz <0
By = AR\ Sy —(d +y )12 B + By + 11y + Pod + Bid)

By = (A71ﬂ2 + Ay B+ ABid +aA,6’2)—(d +l//)(0572 +y172+yd+od +yd +d2)
By =Apy, +Ayid + Aay, >0

Obviously, the endemic equilibrium point exists unique in the interior of positive octant of S7.5,/ — space if and
only if the following condition holds

Bz <0 or B3 >0 (SC)

It is well known that the basic reproduction number, which is denoted by Ry , is an expected number of
secondary cases produced, in a completely susceptible population, by a typical infective individual' [18]. Indeed, if
Ry <1, then on average an infected individual produces less than one new infected individual over the course of

its infectious period, and the infection cannot grow. Conversely, if Ry > 1, then each infected individual produces,

on average, more than one new infection, and the disease can invade the population.

It is clear that, in case of absence of disease, system (1) has a disease free equilibrium point £° = (S 7,85 ,0)

under the condition (4b). Therefore in order to compute Ry, we first rearrange system (3) so that it becomes

dl

o 7181+ BiS{L+ 728y + By Syl —dI —yl

ds

7; =A-aS, -8 - /181 —dS; (6)
ds

th =aS| =728, — P S,1 —dS,

Let X = ([ 91,5, )T , then system (6) can be written as
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axX
—=f(X)-v(X
7 S(X)=v(X)
where
NSy +BSU + 728, + Br8,1 wl +dI
f(X)= 0  v(X) = aS, + S, + BS| I +dS, — A

0 }/zSz +,82S2[+dS2 —(ZSI

Now straightforward computation shows that Df (E°) = (g_{() , and Dv(E°) = (g—)‘;) o can be written as:

BST + 583 00 F 0
Df(E°) = 0 0 0=
f(E7) (0 oj
0 0 0
+d 0 0
(4] l// [ V 0
DV(E )= ﬂlSl a+d O = J J
BS3 —a d) 7P

where F' = cﬁlSlo + 3,85 )lxl and V' = (l// +d )1><1 , therefore the basic reproduction number represent is the

spectral radius of the next generation matrix F y! [18], that means ,O(F V_l) . Consequently, the basic
reproduction number of system (3) can be written as

_BSE+BS3 _ Aldpy +apy) e

R
0 w+d da+d)y +d)

IV. LOCAL STABILITY ANALYSIS

In this section, the local stability analysis of each equilibrium points is studied in terms of basic reproduction
number as shown in the following theorems. First the Jacobian matrix of system (3) at the point £ = (S 192,1),
can be written as

—a-y —pl-d 0 - 55
J(E) = a 12 =Pl —d - 5S, (8)
n+p/Il Y2+ Pl BiS1+ S, —d -y

Theorem (2): Assume that the disease free equilibrium point £  exists, then it is locally asymptotically stable
when Ry <1, while E° unstable if Ry > 1

Proof: Clearly the Jacobian matrix of system (3) at £° which is denoted by J (E 0) can be written
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—(a+d) 0 - Sy
J(EO)z a —d — 5,85 9)
0 0 BiSy + 5,87 —(d+y)

Accordingly, the eigenvalues of J(E?) are given by
/121 =—(a+d)< O,ﬂugz =-d <0, A7 = BS] + S,S5 —(d +y)

Therefore, all the eigenvalues will be negative and hence the disease free equilibrium point is locally asymptotically

_BST + 5S3

stable if and only if Ry = —ad <1 or equivalently A7 < 0. However it is unstable saddle point if and
W+
St + BrS5
only if Ry = % > 1 or equivalently /1? > (. Hence the proof is complete.
W+

Theorem (3): The endemic equilibrium point E * of system (3) is locally asymptotically stable if the following
sufficient conditions hold

BiS; + B,S5 <d+y (10a)
BiSI Ry < Ay(ayaz + Ry )—(ay +a33)R, (10b)
where R;;i =1,2,3 are given in the proof.

Proof: The Jacobian matrix of system (3) at £~ ,say J (E *), can be written

—(05+71+d)—ﬂll* 0 _13151*
o ~(ry+d)=pol” ~ S5 = (a;) (11a)
n+BI° 72+ Bol” BiST + S5 —(d +y)

Hence, the characteristics equation of J (E *) is given by
DB+ 2 + AyA+ 43, =0 (11b)

where Al = _(all +a22 + a33) , A2 =dap1an +R1 + Rz and A3 = —[a11R2 + a13R3] 5 while

Rl =dapazz —apadsg, R2 =dyyd3z3 —dy3a3n and R3 =daj1d3y —Aaydz > 0 . Furthermore we have that:

A= A4y — Ay = Aj(ayaz + Ry)—(az, +as3)Ry — BiS) Ry
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Now, according to Routh-Hurwitz criterion £ * will be locally asymptotically stable provided that
Ay >0,43 >0 and A >0 . It is clear that, condition (10a) guarantees that R; >0 and R, >0 . Hence we

obtain that 4; >0 and 43 > 0. However, A >0 if and only if conditions (10a)-(10b) are satisfied. Hence the

proof is complete.

* *
Recall that, since S; <Sf and S, <S5 then satisfying condition (10a) don’t necessary leads to

Ry = BiST + B2 S; <1
v+d

V. GLOBAL STABILITY ANALYSIS

In this section, the region of global stability (basin of attraction) of each equilibrium point of system (3) is presented
as shown in the following theorems.

Theorem (4): Assume that, the disease free equilibrium point E ° s locally asymptotically stable. Then it is a

globally asymptotically stable in the sub region of R?_ that satisfies the following sufficient conditions:

0+ A S (1480 )+ (s + B1) S, 1+ 59 )< (d + )1 (120
a’ <4d(a+d) (12b)

Proof: Consider the following positive definite function

_ Qo _ Qo
Wl(S15529I):(S1 S1)2+(S2 S2)2+I

2 2
Clearly, wj : Ri — R is a continuously differentiable function such that W, (Slo , S5 ,0): 0 and
wi(81,8,,1)>0, V(S,,S,,1)# (Sf,Sg ,o). Further, we have

D (s, - 57 -5 - 75 - Aisid - asi]

+(Sz —Sg)[aSl — 7285 = 28,1 —dS, ]
+ 181+ BiSU + 728y + By Syl —dl -y 1]

Now, by doing some algebraic manipulation and using the condition (12a), we get

M < _[aa)ls, - sp)-Vals, -s3 |

dt

v+ AD S (1450 )+ (s + BoD) S, 1482 ) (d + w1
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W
Consequently, due to condition (12b), 71 < 0 is negative definite and hence W, is a Lyapunov function with
t

respect to F ° in the region that satisfies the given condition. Thus E° isa globally asymptotically stable and the
proof is complete. ]

Theorem (5): Assume that the equilibrium point £ T locally asymptotically stable. Then it is a globally
asymptotically stable in the sub region of Ri provided that

BiS1+ 2, <d+y (13a)
2

a” <qnd9xn (13b)
2

913 < 411933 (13c)
2

423 < 422933 (13d)

where gy =a+y +d+ Bl . q3=5S1—r—Bl .qn =y, +d+ 1,

423 = PoSy 72 =Bl sand q33 =d +y — S|~ S,

Proof: Consider the following positive definite function

wis -0 sl o]

It is easy to verify that WZ(SI,SZ,I)E CI(RE,R), in addition, WZ(SI*,S;,I*)Z 0 while WZ(S1,52,1)> 0

V(Sl,Sz,]) € Ri and (SI,SZ,]) #* (Sl*,S;,]*). Further by determine the derivative of W, with respect to ¢
and simplifying the resulting terms, we get

%Z—{%(Sl —Sl*)z —0{(51 _Sl*XS2 —S;)+%(52 —S;)z:l
T80 -5 a1l -s5)+ 2017 ]

N N e

Clearly g33 is positive under condition (13a), while conditions (13b)-(13d) give us that
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2 2
dZZ <—{\/§(sl—sl’“)—\/§(sz—sz)} - %(Sl—Sl*)q/?(l—l*)

w
Obviously, 2 is negative definite and hence W, is Layapunov function with respect to £ *. So E"is globally

asymptotically stable in the sub region that satisfies the given conditions.

VI. LOCAL BIFURCATION ANALYSIS

In this section, the occurrence of local bifurcation (such as transcritical, pitchfork and saddle-node) around

equilibrium points is studied. Consider system (3), which can be rewritten as % =H(Y) , where

Y = (SI,S2,I)T and H(Y) = (hl,hz,h3)T . Recall that, the general Jacobian matrix of system (3), say

DH = g_];r =J(8},5,,1) , is given by Eq. (8). Then straightforward computation shows that for any non-zero
vector V' = (Vl,vz, V3 )T we get
=2 vvs
DH(.V)=|  —2Bmyvs (14)
2pvivy +25vpv3
However D> H (V,V,V) =0, therefore pitchfork bifurcation can’t be occur for system (3).
Theorem (6): The system (3) undergoes a transcritical bifurcation but not saddle node bifurcation at disease free

equilibrium point £ if and only if Ry =1.

Proof: Since the Jacobian matrix of system (3) at £ © | that given by Eq.(9), has zero eigenvalue (say A; =0)
_ BSI+BS3

provided that Ry = ) =1 or equivalently at ¥ = 8 S{ + 5,85 —d =/ . So the Jacobian matrix
J(Eo,l/7) becomes:-
—(a+d) 0 —pSYy
T=sEp)=| @ -a -ps3

0 0 0

Now, let K = (kl,kz,k3 )T be the eigenvector corresponding to the eigenvalue A; = 0. Thus JK =0 , which

gives:
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K:(_'Bl_slok _a(BST + 5S3)+dBr S5 .

3, ks | ; ks any nonzero real number
a+d dla+d)

Let ¥ = (l// 1,¥W2,¥3 )T be the eigenvector associated with the eigenvalue A; =0 of the matrix JT . Then from
J¥ =0 we obtain

Y= (0,0, W5 )T ; with /3 any nonzero real number.

Now, consider

T
OH oh, Ohy Ohs .
A oH, (V)= 21,22 5 —(0,0,-1
oy =Y (fw oy awj 00-1)

So. H,,(E°,i7)=(0,0,0) and then W H,, (E°,i7)=0

Thus, according to Sotomayor's theorem [19] the saddle-node bifurcation cannot occur. While the first condition of
transcritical bifurcation is satisfied. Now, since

0
DH,(Y,y)= 0

S O O
oS O O

-1
Hence we obtain that
! [DHW (E2.7)K |= ~ksrs 20

Moreover, according to Eq. (14) and the eigenvector K above we have

_, BiSt
d(a+d)*

DzH(EO , 1/7XK, K)= 2% (a(ﬁle’ +5,83) +dpaS; )kf

B 2'812S10+ 20
(a+d) da+d)

(S? + 859) + 53 3

e(BS? + £,59) +dp,53 )}k%

Hence, it is obtain

~ 28287 2 0 0 0
pT [Dz H(EO,,,,XK, K)]: —L f 1+ dl) + d(aﬂfd) (a(ﬂlSl + B, 89)+dp,S3 )}1@2% =0
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Thus, according to Sotomayor's theorem system (3) has transcritical bifurcation at E ¢ provided that Ry =1 or

W =/ , which complete the proof.

Theorem (7): Assume that
BiST + /S5 >d +y (15a)

k
Then system (3) near the endemic equilibrium point £ undergoes a saddle node bifurcation but not transcritical
bifurcation, as the parameter §/ passes the following specific value

v =BS) + PBrSs —d — (15b)

ay1arydzy —a a»1dz3y —aAHd
here 17 = 11923932 13(a2193) —anaz))

apnan

Proof: According to the Eq. (15b), it is easy to verify that the value of the determinant of J(E *) , that given by
As in the characteristic equation Eq. (11b), will be vanish, that means A3 = 0 . Therefore, J(E *) has zero

eigenvalue, say /7,* =0, which makes £ * non hyperbolic point.

Consequently, the Jacobian matrix of system (3) at F * with the parameter i =/ * becomes
* * * L. * *
J = J(E W )2 (aij ); where a;;, 1, j =1,2,3 are given in Eq. (11a) with a33 = asz3(y )= u.
Let P = ( P1>P2,DP3 )T be the eigenvector corresponding to the eigenvalue ﬂ* =0.Thus J *P =0, which gives:

P = (& p3,&,p3,P3); P3 be any nonzero real number.

a a1xd~1 —ay1a
here, & = — 13 <0,& = 13921 ~ 41193 _
an ajndayn

* T
Let W = (Wl, Wy, Wy )T be the eigenvector associated with the eigenvalue 4 =0 of the matrix J * . Then we
xT
have J W =0 ,which gives

W =(g1w3,5,W3,W3); Wy be any nonzero real number.

dr1drr — Arrd a
here ¢ = 21432 22 31>0;§2=_ 32 50
ajdn; an

Now, consider

T
OH oh, Oh, Oh .
2t )= 92,25 ]~ 0or)

oy Oy Oy
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So, HU/(E*,I//*)= (0,0,—]*)T,andhence WTHW(E*,I//*)=—]*W3 =0

Therefore, the transcritical bifurcation can’t occur. While the first condition of the saddle-node bifurcation is
satisfied.

Moreover, according to Eq. (14) and the eigenvector P above we have

~2p&ép3
D*H(E W' \P.P)=|  —28,6,p3
261&p3 + 25263

Hence, it is obtain
w2 (e (P.P)|= A (- 6260+ 28,6 (- G v,
Now it is easy to verify that wT |_D2H (E *, 74 * XP, P )J # 0. Hence, the system (3) has a saddle-node bifurcation
at E* with parameter " .
In the following theorem, the possibility of occurrence of Hopf bifurcation near the endemic equilibrium point is

investigated. Although, any parameter in system (3) can be a bifurcation parameter, the recover rate parameter ({/ )

is choosing as a candidate bifurcation parameter which makes the endemic equilibrium point non hyperbolic point
due to having two pure imaginary eigenvalues as this parameter passing through a specific value given in the
following theorem.

Theorem (8): Assume that condition (10a) is satisfied and the recover rate parameter § passing through the
following specific value

. . N (N, 1 oo
l//:ﬂlSl +ﬂ2S2 +(_+_ N2—4N1N3J—d (16)
( ) 2N, 2N,

where N;;i =1,2,3 are given in the proof. Then system (3) has two pure imaginary eigenvalues with the third real

and negative. Further it still does not possess a Hopf bifurcation around the equilibrium point £ *

Proof: According to the characteristic equation of the system (3) at E * that is given by Eq.(11b). It is easy to
verify that

A=Ady — Ay =0 <& Njaly+Nyazy + Ny =0 (17a)
where N = _(all +a22)> 0,

Ny =apsaz; +agay —(ay +ay, )

N3 = a13(a11a31 +a21a32)+azzaz3a32 —anazz(an +a22)< 0
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while a; ijobs i, j =1,2,3 are given in (11a). Consequently, the roots of Eq. (17a) are given by:

N, _ 1
N2 -anN
oN, Tan, VI TN

azz =

Since, a33 = LiST + S5 — (d + l//) < 0 by condition (10a), then we get

" " -N 1
BiSt + BaS; —(d+y)= 2——\/1\72—4]\71]\/3

2N, 2N,

Clearly as the parameter ¥/ passing through the value of l/} that given in Eq. (16), then Eq. (17a) is satisfied and
hence we obtain A A, = A3 in the characteristic equation given by Eq. (11b). Therefore the characteristic

equation can be rewritten as:-
Py(A) :(/1+A1)(/12 +A2):0 (17b)

which gives the following roots A;=—-4; <0 under the sufficient condition (10a) and

Ap3 =Fiy|Ay =Fp, ()i . Hence the first part of the theorem is proved.

Recall that the necessary and sufficient conditions for having Hopf bifurcation in system (3), near the endemic
equilibrium point and ¥ = ;/7 , are the existence of two complex conjugate eigenvalues say

A 3= ,01( )$ 12 (l// ) with the third eigenvalue is real and negative, so that p; () = 0. This is satisfied from

the first part. The second condition of having Hopf bifurcation is that A= = (l// )= 0.

Now in order to check the occurrence of Hopf bifurcation in system (3) the second condition should be satisfied
otherwise there is no such bifurcation.

From Eq. (17b), it’s clear that there is a range around 1/7 for which, the complex eigenvalues of system (3) are

written in general as /12’3 = (l//)iipz (l//) Then by substituting 4, = p; (l// )+ ipy (l// ) into the equation
(17b), and calculating the derivative with respect to the bifurcation parameter §/ , that is P3' (/1) =0 and then

comparing the two sides of this equation with equating their real and imaginary parts, we get

EW)pi(y)-Fly)ps(v)=-Gly) (170)

F(y)pi(y)+EW)ps(w)=-H(y)

here  E(w)=3(01 ) + 24/ )1 () + 42 ()~ 3002 ()’
Fy)=6p1y)pr(w)+24(y)p, (v)
Gly)= (o) 4 )+ 4 W)pr )+ 45 ()~ 4 (X o)

!

H W)=2p )P (04 () + 4 ()Pa()
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Solving the resulting linear system (17¢) for the unknown 0y (l// ) and p5 (l//) , it is observe that:-

1 ):—(EG+FH)

Pl (17d)
: EX 4+ F?

Hence the second condition of Hopf bifurcation will be reduced to verifying that

E()G()+ F)H () 0 (17¢)
Straightforward computation shows as:-

A =1, 4y =—(ayy +ay), 4 =(44;) = 4(ay; +axn)+ 4,
Thus for ¥ =/ we have

E==24), F=241\4) . G=-A(ay +ay), H=~(ay +an)y4
Therefore, substituting in equation (17¢), we get

EG+FH =0

*
Hence, the Hopf bifurcation can not occur around the equilibrium point £ . Thus the proof is complete.

VII. NUMERICAL SIMULATIONS

In this section, the global dynamics of system (1) is investigated numerically for different sets of initial values and
different sets of parameters values. The objectives of such investigation are determine the effect of varying the
parameters values and confirm our obtained results. It is observed that, for the following biologically feasible set of
hypothetical parameters values:

A=100,a =0.6,7, =0.001,7, =0.01,3 =0.01, B, =0.03,d =04,y =0.5 (18)

The solution of system (1) approaches asymptotically to the endemic equilibrium point

E = (55.06, 11.57, 81.49, 101.86) as shown in Fig. (1), started from different sets of initial points.
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Fig. 1: Globally asymptotically stable positive equilibrium point of system (1) for the parameters set (18), started
from different sets of initial point. (a) Trajectory of immature susceptible population. (b) Trajectory of mature
susceptible population. (c) Trajectory of infected population. (d) Trajectory of removal population.

Clearly Fig. (1) confirms our obtained analytical results regarding to existence of a globally asymptotically stable

positive equilibrium point when the parameters values are satisfying R, > 1.

On the other hand, system (1) for the following set of hypothetical data approaches asymptotically to the DFE as
shown in Figure 2:

A =100, @ =0.6, ; =y, =0, B =0.001, B, =0.003, d = 0.4, y = 0.5
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Fig. 2: Globally asymptotically stable DFE of system (1) for the parameters set (19), started from different sets of
initial point. (a) Trajectory of immature susceptible population. (b) Trajectory of mature susceptible population.

It is easy to verify that for the data (19), we have R, =0.66< 1, and the solution approaches to

E° =(100,150,0,0).

(c) Trajectory of infected population. (d) Trajectory of removal population.

Now in order to investigate the effect of varying one parameter value at a time on the dynamical behavior of system

(1), the following results are observed.

Varying of the parameters values (&, 1,75,/ ,d) don’t have qualitative effects on the dynamics of system

(1) rather than that they have quantitative effects on the value of positive equilibrium point.

For the parameters values given in Eq.(18) with varying A in the range A <16 and y; = y, =0, the solution of

the system (1) approaches asymptotically to disease free equilibrium point £° =(10,15,0,0) as shown in the

typical figure given by Fig. 3 below.
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Fig. 3: Time series of the solution of system (1) for the data (18) with different values of A\ . (a) Globally
asymptotically stable endemic equilibrium point for A =100 (b) Globally asymptotically stable disease free
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equilibrium point E° for A =10.
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According to the Fig. (3), it’s clear that the solution of system (1) approaches asymptotically to the disease free
equilibrium point. Moreover, for the parameters values given in Eq.(18) with 7y =y, =0 and w > 5.1 the

solution of system (1) approaches asymptotically to £ =(100,150,0,0) as shown in the typical figure that
given by Fig. (4).

160 T 160

130

90fr

Populations
Populations

0 2000 4000 0 2000 4000
Time Time

Fig. 4: Time series of the solution of system (1) for the data (18) with different values of \ . (a) Globally
asymptotically stable endemic equilibrium point for = 0.5 (b) Globally asymptotically stable disease free

equilibrium point E° for w =5.5.

According to the Fig. (4), it is clear that as the §/ increase the solution of system (1) approaches asymptotically to

the £ =(100,150,0,0) equilibrium point.

VIII. CONCLUSIONS AND DISCUSSION

In this paper the effects of Chicken pox disease are formulated mathematically and studied analytically as well as
numerically. The objective of this study is to understand the effects of all factors, which helping the spread of
this type of disease and hence get the capability of control the discase.

The boundedness of the system has been discussed. The existence conditions of all possible equilibrium
points of the system are established. All possible equilibrium points with their local and global stability are
investigated. The qualitative dynamical behavior as a function of varying the parameters values is studied
analytically as well as numerically. Finally, for the biologically feasible set of hypothetical data as given in Eq. (18),
the system (1) is solved numerically and the obtained results are explained in some typical figures and we will
summarize as follows.

1- System (1) does not have periodic dynamics; instead of that it approaches either to the disease free
equilibrium point or else to endemic equilibrium point depending on the value of reproduction number.
2- For the set of hypothetical parameters values given by Eq.(18), the system (1) approached
*
asymptotically to the global stable endemic equilibrium point £
3- Decreasing the natural birth rate of the susceptible A below the specific value causes destabilizing to
the endemic equilibrium point and the trajectories of system (1) approached asymptotically to the

disease free equilibrium point, which indicate to occurrence of bifurcation. Otherwise the system still
has a globally asymptotically stable endemic equilibrium point.
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4- Increasing the recovery rate | above a specific value causes bifurcation in the system and the

trajectory transferred from the endemic equilibrium point to the disease free equilibrium point
asymptotically. Otherwise the system still approaches to the endemic point.

5- Finally all the other parameters have quantitative change but note qualitative change on the stability of
the positive equilibrium point.
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